
A COMMENT ON THE CONFINEMENT PROBLEM 

Steven B. Lipner 
The MITRE Corporation 
Bedford, Massachusetts 

The confinement problem, as identified by Lampson, is the problem of assuring that a 
borrowed program does not steal for its author information that it processes for a borrower. An 
approach to proving that an operating system enforces confinement, by preventing borrowed 
programs from writing information in storage in violation of a formally stated security policy, 
is presented. The confinement problem presented by the possibility that a borrowed program will 
modulate its resource usage to transmit information to its author is also considered. This 
problem is manifest by covert channels associated with the perception of time by the program and 
its author; a scheme for closing such channels is suggested. The practical implications of the 
scheme are discussed. 

Key Words and Phrases: protection, confinement, proprietary program, security, leakage of data 

CR Categories: 2.11, 4.30, 4.35 

I. INTRODUCTION 

In [4] Lampson identified the confinement 
problem--the problem of assuring that a "borrowed" 
program (which Lampson called the service) was 
incapable of stealing information that it 
processed on behalf of a borrower (called the 
customer). Lampson illustrated the confinement 
problem by a series of examples and suggested a 
set of principles to apply to computer systems 
that would solve the problem. 

The purpose of this note is to suggest that 
current research results in computer security 
allow a more precise characterization than 
Lampson's of the confinement problem and of 
principles for its solution in the context of a 
well-defined policy. To that end, this note 
discusses the methods that have been used to 
verify that confinement requirements are met by a 
real system. This paper also comments briefly on 
the covert channels identified by Lampson that are 
very difficult to block in a practical 
multiprogrammed computer system. 

accessed by its (the service's) author to access 
the customer's data. The specific examples of 
storage suggested include own variables, temporary 
and permanent files, interprocess communication 
messages, and file interlocks (semaphores). 

A second class of channel identified by 
Lampson was the legitimate one--the channel used 
by the service to pass billing information to its 
author. The third class of channel identified was 
the covert one, involving modulation of a 
computer's processor usage or paging rate (for 
example), by the service in a manner detectable by 
its author. 

Section 3 below discusses the use of security 
policy models as a criterion for confinement. 
Section 4 describes a technique for closing the 
storage and legitimate channels while Section 5 
considers the problem presented by the covert 
channels. Section 6 summarizes some experience 
with confinement in real systems and Section 7 
presents some conclusions on the current status of 
confinement and the likely course of future 
developments. 

2. A REVIEW OF THE PROBLEM 

In [4] Lampson identified six examples of 
mechanisms by which a service might attempt to 
violate the confinement constraints imposed by a 
customer. Of these, four were characterized as 
storage channels involving the writing by the 
service of storage locations that might be 

3. CLOSING THE CHANNELS 

Lampson suggested that the would-be developer 
of a secure system must enumerate each specific 
channel and then block it in order to solve the 
confinement problem. One purpose of this paper is 
to point out that orderly approaches are available 
for the achievement of that end. 

192 



A number of researchers [I] [15] [10] have 
developed models for the protection of sensitive 
information in computer systems. Each of the 
models referenced characterized a computer system 
(more or less formally) in terms of access by 
subjects (active system elements, processes) to 
objects (units of information). Each model also 
associated with each subject and object a 
"clearance" and "classification" respectively. In 
[I] and [15] clearance, classification, and the 
rules for comparing them were drawn from the 
security level and formal compartment rules of the 
military security system. In [10], a different 
descriptive language is used, but the model is 
essentially similar to the formal compartment 
rules of [I] and [15]. 

Given the basic identification of subjects, 
objects, clearances, classifications, and access 
rules, each model suggests a rule for keeping a 
dynamic record of the classification of each 
object. In [I] the rule, called the *-property, 
forbids a subject from writing in an object unless 
the classification of the object is greater than 
or equal to that of every object the subject has 
read since its creation and thus may "remember" as 
part of the state of its computation. In [15], 
the "high water mark" rule sets the classification 
of any new object that a subject creates to that 
of the highest classified object the subject has 
read. The rule of [10] is similar to the 
*-property in that information may only be written 
to objects bearing the same set of sensitivity 
compartments as the most sensitive of the objects 
read since subject creation. 

The motivation of each of the rules 
identified is precisely to address the confinement 
problem. Each model assures that, with respect to 
a characteristic of special interest (security 
level and compartment for example) no service 
operating on behalf of a subject can reduce the 
sensitivity of information by writing it into any 
object. The choice of the characteristic is based 
on its importance to the operators and users of 
the system. In the military context, for example, 
enforcement of classification and compartment 
restrictions is non-discretionary and confinement 
is of considerable importance. Within the 
classification/compartment restrictions, other 
access decisions are discretionary 
(viz."need-to-know")and confinement is not 
critical. 

Either the *-property or high water mark, if 
applied on every access by a subject to an object, 
can solve the confinement problem for storage 
channels. No matter what the service attempts to 
do, it may not write an object less sensitive than 
its input from the customer. If the author of the 
service had inadequate clearance to see the 
objects input to it by the customer, he will not 
have the clearance required for access to any 
objects that the service can output. 

4. IDENTIFYING THE OBJECTS 

The rules of the *-property and high water 
mark simply formalize the confinement requirements 
of [4]. The problem still remains for the 
designer of a secure system to assure himself that 
he has enumerated every object--a similar 
requirement to enumerating and blocking every 
channel. Fortunately, available design approaches 
simplify and structure the required enumeration. 

The design methodology of [9] decomposes the 
design of an operating system into the formal 
specification of a series of hierarchical levels. 
Each formal specification is proven internally 
consistent with respect to the assumptions of 
individual functions or modules, and correct with 
respect to a set of assertions. Assumptions of 
higher levels dictate assertions about lower 
levels -- thus, lower levels are proven to 
implement higher ones correctly. The formal 
specifications are similar to Parnas 
specifications [7] and are composed of o-functions 
that perform operations and v-functions that store 
and return state values. All information 
accessible to users of the operating system and 
hardware is represented by v-functions of the 
highest level specification and by the "error 
call" returns of the o- and v-functions; all 
possible calls by users on the operating system 
and hardware are represented as o-functions of the 
highest level specification. 

Since the highest level specification 
represents the complete environment accessible to 
a subject, a proof that the *-property (for 
example) is met by that highest level 
specification is a proof that the confinement 
problem has been solved for the specific security 
policy represented by the *-property. It has been 
recognized by [12] [2] and [5] that a proof that 
the highest level specification meets the 
*-property can be constructed by characterizing 
every instance of a v-function (a v-function with 
the arguments specified) of the highest level by 
its classification and then proving that no 
o-function performs an operation that violates the 
*-property. 

In practice the proof proceeds by examining 
the effects section of each o-function to 
determine what v-functions are read and then 
demonstrating that no effect that alters a 
v-function of a given classification~can depend on 
(read or be conditional on) a v-function of a 
higher classification. In this proof, each 
instance of a v-function becomes an object and 
each invocation of an o-function a subject. The 
proof demonstrates that the *-property holds at 
the level of specification subjects and objects. 
The proof must also assure that no error call of a 
function can depend on a v-function that th~ 
process causing the error could not access. No 

! 
In the security kernel mentioned below, error 

calls were replaced by settings of a "return code" 
v-function that was, of course, proven to have a 
security level consistent with the *-property. 

193 



program can access information except that which 
is represented by a v-function of the highest 
level, and the specification identifies all 
members of the (finite) set of instances of 
v-functions. Thus the proof mechanizes the 
enumeration of all channels required by [4]. 

The proof that a given o-function satisfies 
the *-property may generate a relation that must 
hold among the values of several v-functions. 
Such a relation may be proven to be preserved by 
all other o-functions of the highest level using 
an inductive technique developed by Price [8]. 

The set of o-functions and v-functions of the 
specification addresses the entire range of 
information available to a process. This range 
covers not only memory locations in segments 
(whether in main memory or on secondary storage), 
but also a variety of objects to which the 
operating system provides interpretive access, 
including: 

Interprocess communication channels; 
Semaphores; and 
Directories. 

Even information "about information" is covered by 
the specification (and thus the *-property). Thus 
the directory entries containing access control 
lists and date-time-used (time of last read or 
write access) for segments and directories may 
only be updated consistent with the *-property. 
For some types of information such as 
date-time-used, what would appear to be a read 
access (to a segment) may also imply a write 
access (to the date-time-used). Such types of 
information may have to be stratified by 
classification, redefined (for example only 
date-time-written is recorded) or simply 
eliminated from a secure system. 

An attempt to prove that the *-property holds 
in a top-level specification will only succeed if 
the environment includes only virtual (per-subject 
or per-process) resources (v-functions or objects) 
of the appropriate classification. The disk map 
for a virtual memory sytem, for example, is a 
system-wide resource and can be affected by any 
subject (for example when it creates a segment). 
Thus it has a "system high" classification (that 
of the most sensitive information in the system) 
and must be hidden from all but the most highly 
cleared (in practice, from all) subjects or 
processes. The required hiding of information is 
allowed by the specification technique of [9] as 
an aid to orderly well-structured design. In a 
secure system, a designer must write 
specifications so that all effects depending on 
disk address occur at lower levels, and are mapped 
into physical resource-independent effects at the 
highest level. If he does not, he will be unable 
to prove that the lower levels correctly implement 
the highest one. 

5. A DIFFICULT PROBLEM 

The approach outlined above addresses the 
storage channels of [4]. It also completely 
blocks all legitimate channels except in the case 
where the author of the service holds clearanc~ 
for the information processed by the customer. 
The only way to reacquire the legitimate channels 
is to provide an exception to the *-property (or 
high water mark) for a specific class of isolated, 
well-defined and certified programs. These 
programs may.be the customer-determined billing 
programs of [4] or the restricted-granularity 
billing programs of [10]. The certification of 
these programs must assure that, as they are freed 
from the external restraints of the *-property by 
the operating system, they impose it on their own 
internal operations and do not leak sensitive 
information to users who are not allowed to access 
it. Alternatively, billing may be handled 
manually by trusted individuals operating outside 
the computer system. 

The covert channels of Lampson are associated 
with the one system-wide resource, time, that can 
be observed in at least a coarse way by every user 
and every program. Each user (presumably) has a 
wristwatch and each program can tell how many 
instructions it executes before calling for 
input-output or touching a new page. 

To close the "covert" channel, each 
subject must be constrained to see "virtual time" 
depending only on its own activity. A virtual 
clock can be associated with each process, 
assigned a classification in accordance with the 
*-property, and altered as needed by the effects 
section of each o-function. This requirement 
means, for example, that the virtual time required 
when a process touches a new page must be a 
constant and cannot depend on the possibility of 
another process having brought the page into main 
memory. (All page faults require the same virtual 
paging delay.) Similarly, virtual processor time 
must be made available to the virtual environment 
according to a criterion depending only on that 
virtual environment's activity. 

The use of "virtual time" as outlined above 
seems to solve the covert channel problem. 
However, it is not clear that one can cause a 
process to operate in a completely virtual time 
environment and make this environment the one that 
is shown to users. Each user has a perception of 
real time that is independent of the virtual 
environment provided within the computer. For the 
confinement problem to be solved completely, the 
author of a service must not only see that his Job 
requires a given number of virtual CPU-seconds, he 
must also be prevented from drawing any conclusion 
from the real response time of that Job. In a 
batch processing system where jobs are returned at 

2This case is relatively uninteresting for if 
the author of the service is cleared for the 
customer's data, he probably has more direct ways 
to access it -- for example, by asking the 
customer if he may see it. 

194 



fixed intervals, this restriction is simple to 
enforce. However, in a time-sharing system that 
performs adaptive scheduling and demand paging, it 
is not clear that the operating system can prevent 
the author of a service from correlating virtual 
and real time to at least some degree. 
Eliminating this correlation would seem to require 
eliminating any degree of adaptive 
resource-sharing -- for example by providing each 
user a CPU (or CPU time-slice) and fixed real 
memory resources. The price of enforcing this 
level of confinement is probably too great for any 
real system. 

While the storage and legitimate channels of 
Lampson can be closed with a minimal impact on 
system efficiency, closing the covert channel 
seems to impose a direct and unreasonable 
performance penalty. It seems likely that some 
attempt at randomizing the relation of virtual and 
real time, as suggested by Lampson, will be made 
to make the covert channel noisy, instead of 
resorting to the measures required to close it as 
completely as possible. 

6. EXPERIENCE 

A prototype security kernel for the PDP-11/45 
was initially designed using the model of [I] to 
specify a policy for the control of access to 
segments, but no controls at all on objects such 
as access control lists, semaphores and physical 
addresses [13]. When a variety of storage 
channels were discovered in this kernel, a 
redesign was undertaken that applied the model of 
[I] to all objects visible to the user, but failed 
to conceal completely the state of some physical 
resources. (In particular, users could detect the 
"disk full" condition by trying to create 
segments.) Experience with the design of a large 
system which, while not proven secure, did enforce 
the *-property on the activities of user programs 
[3] had by then shown that the environment had to 
be completely virtual, and that physical resource 
availability must be controlled by per-process (or 
per-classification) quotas. Subsequently the 
revised design [14] was formalized using the 
methodology of [9] and specification proofs. Two 
levels of specification were used to isolate from 
users" processes the system-wide resource data 
needed to implement the system. Since proofs of 
the *-property as applied to the kernel 
specification were completed3 no new channels of 
these types have been found. No attempt was 
made to close the covert channel in this effort. 

Saltzer [11] has reported several attempts to 
build and measure covert channels on Multics [6]. 
These attempts involved processes "banging on the 
walls" of the confined environment via a 

q 
~Of course, we recognize that not finding such 
channels does not prove their absence. Our belief 
that storage channels have been eliminated from 
the system derives from the formal design method 
and proofs, not from an ad hoc search for 
channels. 

combination of timing and paging rate. A channel 
of the order of a bit per second has been 
demonstrated, and channels of the order of tens of 
bits per second hypothesized. 

7. CONCLUSIONS 

Current security design techniques are 
adequate to allow us to prove formally that 
storage and legitimate channels have been closed 
in a real system. The techniques that have been 
applied with the specific security policy of [I] 
can also be applied with at least some other 
policies. What is required is to provide an 
explicit model for the desired policy, and a proof 
that the requirements of the model are met by the 
specifications for all functions that are 
accessible to the confined programs. A remaining 
question is what set of policies can be the basis 
of such proof, and how to describe and 
characterize them. 

Closing the covert channels seems at a 
minimum very difficult, and may very well be 
impossible in a system where physical resources 
are shared. Ad hoc measures can probably be of 
value here. 

ACKNOWLEDGEMENTS 

This paper reflects the suggestions of Edmund 
Burke and W. Lee Schiller of the MITRE Corporation 
and of Major Roger Schell and Lieutenants William 
Price and Paul Karger of the Air Force Electronic 
Systems Division. The preparation of the paper 
and much of the work reported were sponsored by the 
Electronic Systems Division under Contract 
F19628-75-C-0001, Projects 522B and 572B. 

REFERENCES 

I. 

2. 

3. 

4. 

Bell, D. Elliott and LaPadula, Leonard J. 
Secure computer systems. ESD-TR-73-278 (AD 
770768, 771543, and 780528) The MITRE 
Corporation, Bedford, Massachusetts (November 
1973). 

Burke, Edmund L. Private communication--Burke 
and Schell seem to have devised the scheme of 
applying the *-property to variables inside a 
security kernel during late 1972 or early 
1973. 

Honeywell Information Systems. Design for 
Multics security enhancements. ESD-TR-74-176, 
Electronic Systems Division (AFSC), L. G. 
Hanscom AFB, Massachusetts (1974). 

Lampson, Butler W. A note on the confinement 
problem. Communications of the ACM 16, 10 
(October 1973), 613-615. 

195 



5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

Millen, Jonathan K. Security kernel 
validation in practice. MTR-2932, Vol. 2, 
The MITRE Corporation, Bedford, Massachusetts 
(In preparation). 

Organick, Elliott I. The Multics System; An 
Examination of its Structure. The MIT Press, 
Cambridge, Massachusetts, 1972. 

Parnas, David L. A technique for software 
module specification with examples. 
Communications of the ACM.!~, 5 (May 1972), 
330-336. 

Price, William R. Implications of a virtual 
memory mechanism for implementing protection 
in a family of operating systems. PhD 
Thesis, Carnegie-Mellon University (June 
1973). 

Robinson, L., Neumann, P. G., Levitt, K. N., 
and Saxena, A. On attaining reliable 
software for a secure operating system. 
Proceedings of the 1975 International 
Conference on Reliable Software., Los 
Angeles, California (April 1975) 267-284. 

Rotenberg, Leo J. Making computers keep 
secrets. MAC-TR-115, Massachusetts Institute 
of Technology, Cambridge, Massachusetts 
(February 1974). 

Saltzer, Jerome H. Private communication. 
(April 1975). 

Schell, Roger R. See reference [2]. 

Schiller, W. Lee. Design of a security kernel 
for the PDP-11/45. ESD-TR-73-294 (AD 
772808), The MITRE Corporation, Bedford, 
Massachusetts (December 1973). 

Schiller, W. Lee. The design and 
specification of a security kernel for the 
PDP-11/45. ESD-TR-75-69 (AD A011712), The 
MITRE Corporation, Bedford, Massachusetts 
(March 1975). 

Weissman, Clark. Security controls in the 
ADEPT-50 time-sharing system. AFIPS 
Conference Proceedings ~_ (FJCC 1969) 
119-133. 

196 


